# The Synthesis and Reactions of Sterically Constrained Pyrylium and Pyridinium Salts $\dagger$ 

By Alan R. Katritzky* and Sukhpal S. Thind, School of Chemical Sciences, University of Eant Anglia, A'orwich NR4 7TJ


#### Abstract

Efficient syntheses are developed for several pyrylium cations with substitution patterns move st rically demanding than 2,4,6-triphenyl and these are examined as reagents for the conversion of primery arsiro intra aving group.  cation gave the corresponding pyridinium derivatives, but they resisted nuciomphme tteci 3 , 3utyl-4,6-  Dihydrobenzopyrylium (6) and tetrahydrodibenzoxanthylium cations (7) gava pyricim nation. whin underwent much easier nucleophilic attack: thus they alkylate xanthate anion in ethanol south. and arfan an acetic acid.


2,4,6-TRIPHENYLPYRYLIUM SALTS ( 1 ) convert the aminogroup of primary amines into a good leaving group, enabling the replacement of $\mathrm{NH}_{2}$ by halogens, ${ }^{1}$ and by $\mathrm{O}-,^{2} \mathrm{~S}-{ }^{3}$ and N -linked functionality. ${ }^{4}$ The demonstrated ${ }^{5}$ superiority of $2,4,6$-triphenylpyridine over

(1) $R^{\prime}=R^{2}=P h$
(2) $R^{1}=R^{t} R^{2}$
(3) $R^{1}=R^{2}=B u^{t}$
(4) $R^{1}=$ Mesityl,$R^{2}=P h$
(5) $R^{1}=R^{2}=$ Mesityl
' $\mathrm{a}, \mathrm{X}=\mathrm{ClO}_{4} ; \mathrm{b}, \mathrm{X}=\mathrm{BF}_{4}$


2,4,6-trimethylpyridine encouraged us to explore other substituted pyridines as leaving groups in the hope of discovering superior alternatives which would allow displacement reactions under milder conditions. This paper describes two distinct lines of exploration: first we have replaced one or both of the $\alpha$-phenyl groups in
(1) by other bulky functions to give the mono- (2) and di-t-butyl analogues (3) and the mono-mesityl compound (4). Secondly we made the polycyclic derivatives (6) and (7) in which the $\alpha$-phenyl groups are constrained to a position more nearly in the plane of the pyrylium ring.

Preparation of Pyrylium Salts.-The pyrylium perchlorates (1a)-(4a), (6a), and (7a) were all prepared by reaction of an $\alpha \beta$-unsaturated ketone with the appropri-
$\dagger$ Related work has been published in the Series 'Heterocycles in Organic Synthesis.'
ate ketone containing the srour खण $\mathrm{H}_{2}$ in the presence of perchloric acic. The $2,4,6$-t mperyl (1a) ${ }^{6}$ and 2 -t-butyl-4,6-diphenyl compotats (2a) ${ }^{7}$ have been previously reported. For the unsymmetical perchlorate (4a), the two possible altemative methous of preparation, (8) and (9), were both atimpled Route (8) was superior to ( 9 ) because in the latter considerable retroaldol reaction of chalcone occurs to give benzaldehyde and acetophenone waici then reacts with more chalcone to form 2,4,6-triphenylpyrylium perchiorate (la), contaminating the product. Although retro-aldol reaction can also occur in route (8), it then gives 2 -acetylmesitylene which is more sterically hindered and less reactive thar acetophenone, and problems of contamination are far less. These difficulties were previously encountered in the synthesis of 2-t-butyl-4,6-diphenylpyrylium perchiorate (2a) ${ }^{8}$ and 6-(2-nitrophenyl)-2,4-diphenylpyrylium perchlorate ${ }^{9}$ by routes of type (9) from chalcone with pinacolone and 2 -nitroacetophenone respectively, and were also overcome by utilising the alternative route (8). Attempted reaction of mesityl styryl ketone with acetylmesitylene to prepare the cation (5) failed, evidently owing to steric crowding.

The perchlorates (6a) and (7a) were obtained from $\alpha$-tetralone with the corresponding chalcone; however,

(10)

(11)
the corresponding tetrafluoroborates $(6 b)$ and (7b) were easier to prepare and were given most attention. 5,6-Dihydro-2,4-diphenylnaphtho[1,2-b]pyrylium tetrafluoroborate ( 6 b ) was prepared ( $76 \%$ ) from $\alpha$-tetralone, chalcone, and boron trifluoride which acted as the condensing agent with chalcone as a hydride abstracting agent. A two-fold excess of chalcone was not needed. ${ }^{10}$ Condensation of $\alpha$-tetralone and benzaldehyde gave 2-

Table 1
Reactions of pyrylium salts with amines

| Pyrylium salt no. | X- | Pyrylium cation | Wt./g | Amine | Wt./g | Solvent | Vol./ml | $T /{ }^{\circ} \mathrm{C}$ | Time/h | $\mathrm{Et}_{2} \mathrm{O}$ added (ml) | Pyridinium salt no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1a) | $\mathrm{ClO}_{4}{ }^{-}$ | 2,4,6-Triphenyl | 4.0 | $\mathrm{MeNH}_{2}$ | $\begin{gathered} 1.2 \mathrm{ml} / \\ 30 \% \\ \text { EtOH } \end{gathered}$ | EtOH | 50 | 20 | 2 | 200 | (12a) |
|  |  |  | 3.5 | $\mathrm{BuNH}_{2}$ | 0.75 | EtOH | 35 | 20 | 2 | 50 | (13a) |
|  |  |  | 4.0 | $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ | 2.5 ml | EtOH | 20 | 20 | 6 | 100 | (14a) |
| (lb) | $\mathrm{BF}_{4}{ }^{-}$ | 2,4,6-Triphenyl | 3.0 | $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ | 1.0 | EtOH | 20 | 20 | 6 | 100 | (14b) |
|  |  |  | 5.0 | $\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{NH}_{2}$ | 1.13 | EtOH | 20 | 80 | 2 | 100 | (15b) |
|  |  |  | 5.0 | $\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{NH}_{2}$ | 1.45 | EtOH | 25 | 80 | 2 | 100 | (16b) |
|  |  |  | 5.0 | $\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{7} \mathrm{NH}_{2}$ | 1.16 | EtOH | 25 | 80 | 2 | 100 | (17b) |
|  |  |  | 3.0 | $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ | 1.2 | EtOH | 20 | 20 | 6 | 100 | (18b) |
|  |  |  | 3.0 | $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ | 1.0 | EtOH | 20 | 20 | 6 | 100 | (19b) |
| (2a) | $\mathrm{ClO}_{4}{ }^{-}$ | $\begin{aligned} & \text { 4,6-Diphenyl-2-t- } \\ & \text { butyl } \end{aligned}$ | ${ }_{2}$ | $\mathrm{MeNH}_{2}$ | 0.33 | EtOH | 20 | 20 | 2 | 50 | (20a) |
|  |  |  | $\{2$ | $\mathrm{Bu}^{\mathrm{n}} \mathrm{NH}_{2}$ | 1.0 | EtOH | 30 | 20 | 2 | 100 | (21a) |
|  |  |  | $\{2$ | $2-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}$ | 0.4 | EtOH | 30 | 80 | 3 | 50 | (22a) |
| (2b) |  |  | 1.5 | $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ | 1.75 | EtOH | 15 | 20 | 6 | 100 | (23a) |
|  | $\mathrm{BF}_{4}-$ | $\begin{aligned} & \text { 4,6-Diphenyl-2-t- } \\ & \text { butyl } \end{aligned}$ | \{ 1.5 | $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ | 1.75 | EtOH | 15 | 20 | 6 | 100 | (23b) |
|  |  |  | $\{1.5$ | $p-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ | 1.7 | EtOH | 20 | 20 | 6 | 100 | (24b) |
| (3a) | $\mathrm{ClO}_{4}{ }^{-}$ | 4-Phenyl-2,6-di-tbutyl | 2 | $\mathrm{MeNH}_{2}$ | 0.4 | EtOH | 20 | 20 | 2 | 50 | (25) |
| (6a) | $\mathrm{ClO}_{4}{ }^{-}$ | 5,6-Dihydro-2,4-diphenylnaphtho[b] | [ 2.5 | $\mathrm{MeNH}_{3}$ | 0.4 | EtOH | 30 | 20 | 2 | 20 | (27a) |
|  |  |  | 3 | $\mathrm{Bu}^{\mathrm{n}} \mathrm{NH}_{2}$ | 1 ml | EtOH | 20 | 20 | 2 | 50 | (28a) |
|  |  |  | 3 | $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ | 1.0 | EtOH | 20 | 20 | 6 | 50 | (29a) |
|  |  |  | 2.5 | $2-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}$ | 0.5 | EtOH | 20 | 80 | 6 | 50 | (30a) |
|  |  |  | 3 | $\mathrm{PhNH}_{2}$ | 2 ml | EtOH | 20 | 80 | ${ }_{6}$ | 50 | (31a) |
| (6b) | $\mathrm{BF}_{4}{ }^{-}$ | 5,6-Dihydro-2,4-diphenylnaphtho[b] | ( 4.2 | $\mathrm{BuNH}_{2}$ | 0.73 | EtOH | 20 | 20 | 12 | 50 | (28b) |
|  |  |  | 4.2 | $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ | 1.4 | EtOH | 20 | 20 | 12 | 50 | (29b) |
|  |  |  | 2.5 | $2-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}$ | 0.56 | EtOH | 15 | 80 | 6 | 40 | (30b) |
|  |  |  | $\left\{\begin{array}{l}2.5 \\ 4.2\end{array}\right.$ | ${ }_{o} \mathrm{PhNH}_{2} \mathrm{ClC}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ | 2 ml 1.4 | EtOH | 15 20 | 80 20 | 6 12 | 50 | (31b) |
|  |  |  | $\left\{\begin{array}{l}4.2 \\ 4.2\end{array}\right.$ | $\stackrel{o-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}}{ }$ | 1.4 1.45 | Etor | 20 20 | 20 20 | 12 | 50 50 | (32b) |
|  |  |  | 4.2 | $4-\mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}$ | 1.5 | EtOH | 20 | 20 | 12 | 50 | (34b) |
| (7a) | $\mathrm{ClO}_{4}{ }^{-}$ |  | 2.5 | $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ | 0.75 | EtOH | 20 | 80 | 6 | 50 | (35b) |
|  |  |  | 3.0 | $\mathrm{OH}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{NH}_{2}$ | 0.52 | EtOH | 15 | 20 | 12 | 50 | (36b) |
|  |  | 5,6,8,9-Tetrahydro-7-phenyldibenzo[ $c, h]$ xanthylium | ${ }_{2}^{2}$ | $\mathrm{MeNH}_{2}$ | 0.35 | EtOH | 20 | 20 | 0.5 | 40 | (38a) |
|  |  |  | 2 | $\mathrm{BuNH}_{2}$ | 0.5 | EtOH | 20 | 20 | 0.3 | 40 | (39a) |
|  |  |  | $\left\{\begin{array}{l}3 \\ 0.5\end{array}\right.$ | $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ | 1.0 | EtOH | 20 | $\stackrel{20}{ }$ | 5 | 30 | (40a) |
|  |  |  |  | ${ }_{2-\mathrm{NH}_{2} \mathrm{C}^{2} \mathrm{H} \mathrm{N}}$ | 0.25 0.25 | $\mathrm{CHONMe}_{2}$ | 10 | Reflux | 2 | 50 | (41a) |
|  |  |  | 0 | $\xrightarrow[\text { Furfurylamine }]{2-\mathrm{NH}_{3} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}}$ | 0.25 0.2 | ${ }_{\text {EtOH }}$ | 10 | Reflux | $\stackrel{2}{12}$ | 50 50 | (42a) |

benzylidene-1-tetralone (10) ( $75 \%$ ) ${ }^{11}$ which reacts with more $\alpha$-tetralone in the presence of boron trifluorideether to give 5,6,8,9-tetrahydro-7-phenyldibenzo $[c, h]$ -


$$
\left.\begin{array}{ll}
\text { (12) } \mathrm{R}=\mathrm{Me} & \text { (16) } \mathrm{R}=\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{5} \\
\text { (13) } \mathrm{R}=\mathrm{Bu} & \text { (17) } \mathrm{R}=\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{7} \\
\text { (14) } \mathrm{R}=\mathrm{PhCH}
\end{array}\right) \text { (18) } \mathrm{R}=\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \text { (p) }
$$

xanthylium tetrafluoroborate (7b), characterised by its spectral data.
Changing the anion of a pyrylium salt is most conveniently effected via the corresponding open-chain diketone (pseudobase). ${ }^{1 b}$ The tricyclic and pentacyclic pyrylium tetrafluoroborates have been thus converted into other salts. ${ }^{12}$

Preparation of Pyridinium Salts.-Five of the pyrylium perchlorates [(1a)-(3a), (6a), (7a)] reacted smoothly with ammonia to give the corresponding pyridines and
with a variety of amines to yield the corresponding pyridinium perchlorates [(12)-(43)] (Tables 1 and 2).


(25)

$$
\begin{aligned}
(20) R & =M e \\
\text { (21) } R & =\mathrm{Bu}^{n} \\
\text { (22) } R & =2-\text { Pyridyl } \\
\text { (23) } R & =\mathrm{PhCH}_{2} \\
(24) R & =\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-(p) \\
a, X & =\mathrm{ClO}_{4} ; b, X=\mathrm{BF}_{4}
\end{aligned}
$$


(26)
(27) $\mathrm{R}=\mathrm{Me}$
(28) $R=B u^{n}$
(29) $\mathrm{R}=\mathrm{PhCH}_{2}$
(30) $R=2$-Pyridyl
(31) $R=P h$
(32) $\mathrm{R}=\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$ (0)
(33) $\mathrm{R}=\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}(p)$
(34) R = 4-Picolyl
(35) $\mathrm{R}=\mathrm{MeC}_{6} \mathrm{H}_{4}(p)$
(36) $R=\mathrm{HO}\left[\mathrm{CH}_{2}\right]_{3}$

All the reactions were initially attempted in ethanol as solvent and at $20^{\circ} \mathrm{C}$; however for aniline and 2 -amino-
pyridine it was usually necessary to use refluxing ethanol or [in the case of the polycyclic pyrylium salt (7)] dimethylformamide. However, attempts to prepare pyridinium salts from 2-mesityl-4,6-diphenylpyrylium perchlorate (4) gave only the open-chain diketone pseudo-base. Evidently the final ring-closure is sterically hindered in this series.
as the chain length increases the salts become increasingly difficult to crystallise.

Initial nucleophilic attack by the amine is not the rate-determining step in the conversion of pyrylium into pyridinium salts. When the reaction is carried out in non-polar solvents such as carbon tetrachloride, or benzene, in which the starting material is insoluble, the

Table 2
Properties of pyridinium salts

| mpound | Solvent |  | Yield/ | Found/\% |  |  |  |  | Required/\% |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| no. | for cryst. | Cryst. form. | $\%$ | M.p. $/{ }^{\circ} \mathrm{C}$ | C | H | N | Formula | $\stackrel{\text { C }}{ }$ | H | N |
| (12a) | EtOH | Microcrystals | 88 | $215{ }^{\text {a }}$ |  |  |  |  |  |  |  |
| (13a) | MeOH | Prisms | 66 | 207-208 | 69.8 | 5.9 | 3.2 | $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClNO}_{4}$ | 69.9 | 5.7 | 3.0 |
| (14a) | EtOH | Needles | 84 | 205-207 ${ }^{\text {b }}$ | 72.0 | 4.9 | 2.6 | $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{ClNO}_{4}$ | 72.0 | 4.9 | 2.8 |
| (14b) | EtOH | Prisms | 94 | 156 | 74.0 | 4.9 | 2.7 | $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{~N}^{4}$ | 74.2 | 5.0 | 2.9 |
| (15b) | EtOH | Needles | 51 | 245-246 | 72.4 | 6.1 | 3.1 | $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{~N}$ | 72.3 | 6.1 | 3.0 |
| (16b) | EtOH | Prisms | 65 | 236-238 | 72.6 | 6.4 | 2.9 | $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{BF}_{4} \mathrm{~N}$ | 72.7 | 6.3 | 2.9 |
| (17b) | EtOH | Prisms | 70 | 155 | 73.2 | 6.8 | 3.8 | $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{BF}_{4} \mathrm{~N}$ | 73.4 | 6.8 | 2.8 |
| (18b) | EtOH | Prisms | 88 | 133 | 68.8 | 4.8 | 2.6 | $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BClF}_{4} \mathrm{~N}$ | 69.3 | 4.5 | 2.8 |
| (19b) | EtOH | Prisms | 98 | 134 | 71.7 | 5.2 | $2.7{ }^{\circ}$ | $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{~N} .5 \mathrm{H}_{2} \mathrm{O}$ | 71.5 | 5.0 | 2.7 |
| (20a) | EtOH | Prisms | 64 | 252 | 659 | 6.1 | 3.6 | $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClNO}_{4}$ | 66.2 | 6.1 | 3.6 |
| (21a) | EtOH | Prisms | 36 | 154-155 | 67.9 | 6.9 | 3.0 | $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClNO}_{4}$ | 676 | 6.8 | 3.2 |
| (22a) | $\begin{aligned} & \mathrm{EtOH}- \\ & \mathrm{MeOH} \end{aligned}$ | Needles | 56 | 199-200 | 66.8 | 5.3 | 5.9 | $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4}$ | 67.1 | 5.4 | 6.0 |
| (23a) | EtOH | Needles | 62 | 193-195 ${ }^{\text {d }}$ | 69.9 | 5.7 | 2.8 | $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClNO}_{4}$ | 70.3 | 5.9 | 2.9 |
| (23b) | EtOH | Prisms | 76 | 151 | 72.0 | 6.0 | 3.1 | $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{BF}_{4} \mathrm{~N}$ | 72.3 | 6.1 | 3.0 |
| (24b) | EtOH | Prisms | 68 | 155-157 |  |  | 2.8 | $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{BClF}_{4} \mathrm{~N}$ |  |  | 2.8 |
| (25) | EtOH | Prisms | 75 | 253-255 | 62.5 | 7.2 | 4.0 | $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{ClNO}_{4}$ | 62.9 | 7.4 | 3.7 |
| (27a) | MeOH | Plates | 64 | 160-161 | 69.4 | 4.8 | 3.1 | $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClNO}_{4}$ | 69.7 | 5.0 | 3.1 |
| (28a) | $\begin{aligned} & \mathrm{EtOH}- \\ & \mathrm{MeOH} \end{aligned}$ | Prisms | 62 | 134 | 71.0 | 5.8 | 3.2 | $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{ClNO}_{4}$ | 71.1 | 5.8 | 2.9 |
| (28b) | EtOH | Prisms | 65 | 97-98 |  |  | 2.8 | $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{~N}$ |  |  | 2.9 |
| (29a) | MeOH | Needles | 88 | 152 | 73.6 | 5.1 | 2.7 | $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{ClNO}_{4}$ | 73.3 | 5.0 | 2.7 |
| (29b) | EtOH | Needles | 94 | 193 | 75.1 | 5.2 | 2.7 | $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{BF}_{4} \mathrm{~N}$ | 75.2 | 5.1 | 2.7 |
| (30a) | $\begin{aligned} & \mathrm{EtOH}- \\ & \mathrm{MeOH} \end{aligned}$ | Needles | 68 | 257-258 | 70.3 | 4.6 | 5.7 | $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4}$ | 70.5 | 4.5 | 5.5 |
| (30b) | EtOH | Prisms | 95 | 258 | 72.7 | 4.6 | 5.2 | $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{~N}_{2}$ | 72.3 | 4.7 | 5.6 |
| (31a) | MeOH | Prisms | 87 | 304-305 | 72.8 | 4.9 | 2.8 | $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClNO}_{4}$ | 73.0 | 4.7 | 2.8 |
| (31b) | EtOH | Prisms | 94 | 274 | 74.8 | 4.7 | 2.8 | $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{~N}$ | 74.9 | 4.9 | 2.8 |
| (32b) | EtOH | Needles | 83 | 189 | 70.2 | 4.4 | 2.4 | $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{BClF}_{4} \mathrm{~N}$ | 70.4 | 4.6 | 2.5 |
| (33b) | EtOH | Needles | 90 | 163 | 75.7 | 5.0 | 2.7 | $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{~N}$ | 75.4 | 5.3 | 2.7 |
| (34b) | EtOH | Prisms | 69 | 201 | 72.1 | 4.9 | 5.5 | $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{BF}_{4} \mathrm{~N}_{2}$ | 73.0 | 4.6 | 5.5 |
| (35b) | EtOH | Prisms | 90 | 294 | 75.1 | 5.2 | 2.7 | $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{~N}$ | 75.2 | 5.1 | 2.7 |
| (36b) | EtOH | Prisms | 88 | 92 |  |  | 3.2 | $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{NO}$ |  |  | 2.9 |
| (38a) | $\begin{aligned} & \mathrm{Et}_{2} \mathrm{O}- \\ & \mathrm{Me}_{2} \mathrm{CO} \end{aligned}$ | Plates | 73 | 294 | 70.7 | 5.1 | 3.1 | $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{ClNO}_{4}$ | 71.0 | 5.1 | 3.0 |
| (39a) | EtOH | Prisms | 67 | 138 | 71.8 | 5.8 | 2.7 | $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{ClNO}_{4}$ | 72.2 | 5.8 | 2.7 |
| (40a) | EtOH | Prisms | 85 | 279 | 74.3 | 5.0 | 2.4 | $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{ClNO}_{4}$ | 74.2 | 5.1 | 2.6 |
| (41a) | MeOH | Needles | 70 | $>350$ | 73.5 | 5.0 | 2.8 | $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{ClNO}_{4}$ | 73.9 | 4.9 | 2.6 |
| (42a) | MeOH | Needles | 85 | 316--318 | 71.4 | 4.7 | 5.4 | $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4}$ | 71.6 | 4.7 | 5.2 |
| (43a) | MeOH | Needles | 63 | $>350$ | 73.2 | 5.0 | 2.4 | $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{ClNO}_{4}$ | 73.3 | 5.0 | 2.7 |

${ }^{a}$ Lit. m.p. $214-215.5^{\circ} \mathrm{C}$ [K. Dimroth, K. Wolf, and H. Kroke, Annalen, 1964, 678, 183 (Chem. Abs., 1965, 62, $\left.\left.512 a\right)\right]$. ${ }^{b}$ Lit. m.p. $196-198^{\circ} \mathrm{C}$ (ref. 19). ${ }^{c}$ Lit. m.p. $174-176{ }^{\circ} \mathrm{C}$ (ref. 19). ${ }^{d}$ Lit. m.p. $193-195{ }^{\circ} \mathrm{C}$ (ref. 8, p. 83).

The three pyrylium tetrafluoroborates [(1b), (2b), and (6b)] each gave the corresponding pyridinium tetrafluoroborates from the primary amine in ethanol (ca. $5 \mathrm{ml} / \mathrm{g}$ of compound) in excellent yield. The 1 -alkyl and 1-benzyl-substituted tetrafluoroborates were best prepared at $20^{\circ} \mathrm{C}$, the 1 -aryl analogues at higher reaction temperatures. The ease of reaction depends on the basicity of the primary amine, on the steric nature of the pyrylium ring, and on the temperature of the reaction and the solvent. Aprotic solvents such as dimethylformamide seem to enhance the rate but the purity is adversely affected. For each series of $N$-alkylpyridinium tetrafluoroborates the melting point decreases with increasing chain length of the $N$-alkyl substituent, and
addition of amine quickly transforms the initial suspension into a red solution, indicative of the attack of the amine at the 2 -position; the product can be formed as fast in these solvents as when polar solvents are used. Kinetic confirmation of these qualitative observations has recently been achieved. ${ }^{13}$

Reaction of the Pyridinium Salts with Nucleophiles.Representative examples of the salts (12)-(43) reacted with various nucleophiles (Table 3) to give the corresponding pyridine together with the alkylated nucleophile. The pyridines were made independently by reaction of the pyrylium salts with ammonia. Attempted reactions of 1-methyl-4-phenyl-2,6-di-tbutylpyridinium perchlorate (25) with pyridine and with
piperidine failed under conditions where all the other salts tested reacted easily. This result agrees with the surprising stability reported for the methiodide of $\mathbf{2 , 6}$ di-t-butylpyridine; this methiodide can only be prepared under very high pressure, but once attached, the methyl group is evidently locked in place. ${ }^{\mathbf{1 4}}$

Pyrolysis of $N$-benzyl-2,4,6-triphenylpyridinium tetrafluoroborate with anhydrous sodium acetate at $210{ }^{\circ} \mathrm{C}$ gives benzyl acetate in $70 \%$ yield. ${ }^{2}$ We now show that whereas this reaction does not proceed in acetic acid, the $N$-benzyl derivatives of both the dihydronaphtho (29a) and the tetrahydroacridinium

Table 3
Reactions of pyridinium salts

| N-Substituent | Reagent | Triphenyl |  | $\begin{gathered} \text { 4,6-Diphenyl-2-t- } \\ \text { butyl } \end{gathered}$ |  | 2,4-Diphenyldihydronaphtho[b] |  | 7-phenyldibenzo $[c, h]$ acridinium |  |  | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\xlongequal[\substack{\text { Yield/ } \\ \%}]{ }$ | M.p. ${ }^{\circ} \mathrm{C}$ | Yield/ $\%$ | M.p. ${ }^{\circ} \mathrm{C}$ | Yield/ $\%$ | M.p. $/{ }^{\circ} \mathrm{C}$ | Yield/ | M.p. $/{ }^{\circ} \mathrm{C}$ | $\underset{\text { M.p. } /{ }^{\circ} \mathrm{C}}{\text { Lit }}$ |  |
| Me | Pyridine | 84 | 135 | 75 | 134-135 | 92 | 134.5 | 84 | 135 | 135 | $b$ |
| $\mathrm{Bu}^{\text {n }}$ | Pyridine | $90^{\text {a }}$ |  |  |  | 96 |  | 98 |  |  | $b$ |
| $\mathrm{CH}_{2} \mathrm{Ph}$ | Pyridine | 88 | 89-91 | 74 | 85-86 | 84 | 88 | 96 | 85-87 | 85 | $c$ |
| Me | Piperidine |  |  |  |  | 96 | d |  |  |  |  |
| $\mathrm{CH}_{2} \mathrm{Ph}$ | Piperidine | 85 | $\underset{179-f}{178.5-f}$ | 62 | $178{ }^{\text {f }}$ | 80 | $178.6{ }^{\prime}$ |  |  | 178-179 | $e$ |
| $\mathrm{Bu}^{\text {n }}$ | Morpholine |  |  |  |  | 66 | 126-127.f | 71 | 125 | 126-127 |  |
| $\mathrm{CH}_{2} \mathrm{Ph}$ | Morpholine | 92 | $195^{\circ}$ |  |  | 88 | 195.5 | 91 | 195 | 196 | $h$ |
| Me | $\mathrm{MeOCS}_{2}-\mathrm{K}^{+}$ | 0 |  | 15 |  | $85^{i}$ |  | $90^{i}$ |  |  |  |
| $\mathrm{Bu}^{\text {n }}$ | MeOCS ${ }^{-}{ }^{+}$ |  |  |  |  | $98^{\text {i }}$ |  | $95^{\text {i }}$ |  |  |  |
| $\mathrm{CH}_{2} \mathrm{Ph}$ | $\mathrm{MeOCS}_{2}-\mathrm{K}^{+}$ | $95^{\text {i }}$ |  |  |  | $80^{\circ}$ |  | 82 ' |  |  |  |
| $\mathrm{CH}_{2} \mathrm{Ph}$ | $\mathrm{MeCO}_{2}{ }^{-} \mathrm{Na}{ }^{+}$ | 0 |  |  |  | $90^{\text {i }}$ |  | 92 ; |  |  |  |

${ }^{6} N$-n-Butylpyridinium perchlorate does not crystallise (S. Ukai and K. Hirose, Chem. Pharm. Bull. Japan, 1968, 16, 195). ${ }^{\text {b }}$ See ref. in footnote a. ${ }^{\circ}$ J. de Pascual Teresa and H. Sanchez Bellido, Anales real soc. españ fisi y quim. Madrid, 1954, 50B, 71 (Chem. Abs., 1955, 49, 3054a). ${ }^{d}$ Yield based on amount of substituted pyridine isolated. ${ }^{\boldsymbol{e}}$ Ref. 19. ${ }^{f}$ Characterised as the picrate. ${ }^{\circ}$ T. Ishiguro, E. Kitamura, and M. Matsumura, J. Pharm. Soc. Japan, 1954, 74, 1162. ${ }^{\text {n }}$ J. P. Mason and M. Zief, J. Amer. Chem. Soc., 1940, 62, 1450. ${ }^{i}$ Characterised by comparison of i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra with authentic samples.

The results in Table 3 indicate that for the alkylation and benzylation of pyridine, piperidine, and morpholine with $N$-substituted pyridinium salts, the use of the more complex pyridinium cations offers little significant advantage over the $2,4,6$-triphenyl series. However such advantages do arise in other cases.
$N$-Methyl-2,4,6-triphenylpyridinium perchlorate (12a) failed to react with methyl xanthate anion $\left(\mathrm{MeOCS}_{2}-\mathrm{Na}^{+}\right)$ in refluxing ethanol; we previously reported that N benzyl but not $N$-alkyl analogues reacted under these conditions. ${ }^{3,15}$ By contrast, $N$-benzyl and $N$-alkyl derivatives of both the dihydronaphtho [(27a), (28a),

(37)

$$
\begin{array}{ll}
\text { (38) } \mathrm{R}=\mathrm{Me} & \text { (41) } \mathrm{R}=\mathrm{Ph} \\
\text { (39) } \mathrm{R}=\mathrm{Bu}^{\mathrm{n}} & \text { (42) } \mathrm{R}=2-\text { Pyridyl } \\
(40) \mathrm{R}=\mathrm{PhCH}_{2} & \text { (43) } \mathrm{R}=
\end{array}
$$

(29a)] and tetrahydroacridinium series [(38a), (39a), (40a)] reacted with xanthate anion in refluxing ethanol in high yield. $N$-Methyl-4,6-diphenyl-2-t-butyl-pyridinium perchlorate (20a) reacted with xanthate to give only a poor yield under these conditions.
series (40a) react with sodium acetate in acetic acid to give benzyl acetate in yields of 90 and $92 \%$, respectively.

These experiments prove conclusively that the tri- (44) and penta-cyclic pyridines (45) are far better leaving

(44)

(45)
groups than $\mathbf{2 , 4 , 6}$-triphenylpyridine. These results significantly extend the potential range of application of nucleophilic displacement of primary amino-groups by conversion into pyridinium salts. We have recently utilised this increased reactivity in a new synthesis of aryl thiocyanates. ${ }^{16}$

## EXPERIMENTAL

The following compounds were made by the literature methods quoted: 2,4,6-triphenylpyrylium perchlorate (1a) ( $71 \%$ ), m.p. $290^{\circ} \mathrm{C}$ (lit. ${ }^{7}$ m.p. $290{ }^{\circ} \mathrm{C}$ ), and 2-benzylidene-1tetralone ( $85 \%$ ), m.p. $106{ }^{\circ} \mathrm{C}$ (lit., ${ }^{17}$ m.p. $106-107{ }^{\circ} \mathrm{C}$ ).

4,6-Diphenyl-2-t-butylpyrylium Perchlorate (2a).Styryl t-butyl ketone ( $20 \mathrm{~g}, 0.11 \mathrm{~mol}$ ) and acetophenone $(6 \mathrm{~g}, 0.05 \mathrm{~mol})$ were stirred at $100{ }^{\circ} \mathrm{C}$ with $\mathrm{HClO}_{4}(8 \mathrm{~g}, 0.08$ $\mathrm{mol})$ for 6 h . On cooling to $40^{\circ} \mathrm{C} \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ was added and the crystalline perchlorate (2a) formed filtered off and recrystallised from $\mathrm{AcOH}(10.1 \mathrm{~g}, 42 \%$ ), prisms, m.p. 264$266{ }^{\circ} \mathrm{C}$ (Found: C, 64.8; H, 5.5. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClO}_{5}$ requires C , $64.9 ; \mathrm{H}, 5.5 \%$ ) ; $\nu_{\text {max. }} 1627,1596,1588,1540,1244$,

1079,720 , and $670 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.1(1 \mathrm{H}, \mathrm{s}), 7.8(1 \mathrm{H}$, s), $7.5-7.8(4 \mathrm{H}, \mathrm{m}), 7.2-7.4(6 \mathrm{H}, \mathrm{m})$, and $1.2(9 \mathrm{H}, \mathrm{s})$.

4-Phenyl-2,6-di-t-butylpyrylium Perchlorate (3a) (cf. ref. 18).-Styryl t-butyl ketone ( $9.4 \mathrm{~g}, 0.05 \mathrm{~mol}$ ) and pinacolone $(2.5 \mathrm{~g}, 0.025 \mathrm{~mol})$ were heated at $130{ }^{\circ} \mathrm{C}$ with $\mathrm{HClO}_{4}(3.5 \mathrm{~g}$, 0.03 mol ) for 8 h . The mixture was then refluxed for 1 h in absolute EtOH ( 50 ml ) and charcoal ( 10 g ). The EtOH was evaporated off and the product was dissolved in acetone ( 40 ml ) and filtered. The perchlorate (3a) was obtained by precipitation with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})(1.4 \mathrm{~g}, 15 \%)$. Recrystallisation from $\mathrm{HCO}_{2} \mathrm{H}$ gave prisms, m.p. 252$253{ }^{\circ} \mathrm{C}$ (Found: C, 63.3; H, 6.7. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClO}_{5}$ requires C, $63.2 ; \mathrm{H}, 6.8 \%$ ) ; $\nu_{\text {max }} 1630,1600,1585,1240,1085,962$, 876,766 , and $680 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 7.7(2 \mathrm{H}, \mathrm{s}), 7.5-7.2$ $(5 \mathrm{H}, \mathrm{m})$, and $1.2(18 \mathrm{H}, \mathrm{s})$.
2-Mesityl-4,6-diphenylpyrylium Perchlorate (4a).Mesityl styryl ketone ( 15 g ) and acetophenone ( 3.6 g ) were stirred on a steam-bath at $100^{\circ} \mathrm{C}$ with $\mathrm{HClO}_{4}(4.5 \mathrm{~g})$ for 6 h . On cooling to $40{ }^{\circ} \mathrm{C} \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ was added. The brown oil formed the yellow crystalline perchlorate (4a) (4 g, 45\%) as needles from AcOH, m.p. $256-257{ }^{\circ} \mathrm{C}$ (Found: C, 68.8; $\mathrm{H}, 5.2 . \quad \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}, 5.2$ ) ; $\nu_{\text {max. }}$ (Nujol) $1628 \mathrm{~s}, 1595 \mathrm{~s}, 1585 \mathrm{~m}, 1548 \mathrm{~ms}, 1235 \mathrm{~m}, 1080 \mathrm{~s}, 715 \mathrm{~m}$, and $680 \mathrm{~m} \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.4(1 \mathrm{H}, \mathrm{s}), 8.05(1 \mathrm{H}, \mathrm{s}), 7.95-$ $6.85(12 \mathrm{H}, \mathrm{m})$, and $2.05(9 \mathrm{H}, \mathrm{s})$.

5,6-Dihydro-2,4-diphenylnaphtho[1,2-b]pyrylium Perchlorate ( 6 a ).-Chalcone ( $3 \mathrm{~g}, 0.014 \mathrm{~mol}$ ) and $\alpha$-tetralone ( 1.5 g , 0.01 mol ) were heated to $90^{\circ} \mathrm{C}$ in an oil-bath with stírring. $\mathrm{HClO}_{4}(1.2 \mathrm{~g}, 0.012 \mathrm{~mol})$ was added dropwise. The temperature was raised to $120^{\circ} \mathrm{C}$ for 10 min . The product was refluxed in $\mathrm{EtOH}(20 \mathrm{ml})$ for 15 min ; after cooling $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was added to give the perchlorate ( 6 a ) ( 3.1 g , $68 \%$ ) as yellow prisms ( MeOH ), m.p. $294-295{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 68.8 ; \mathrm{H}, 4.5 . \quad \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 4.4 \%$ ); $\nu_{\text {max. }}$ (Nujol) $740 \mathrm{~m}, 763 \mathrm{~m}, 787 \mathrm{w}, 875 \mathrm{w}, 1080 \mathrm{vs}\left(\mathrm{ClO}_{4}^{-}\right)$, $1160 \mathrm{w}, 1210 \mathrm{w}, 1240 \mathrm{w}, 1573 \mathrm{mw}, 1600 \mathrm{~m}$, and $1620 \mathrm{~s} \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 100 \mathrm{MHz}\right) 8.50-8.20\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.9-7.4$ ( $11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$-pyrylium), and $3.4-3.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. 5,6-Dihydro-2,4-diphenylnaphtho[1,2-b]pyrylium Tetrafluoroborate ( 6 b ).-Chalcone ( $20.8 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) was heated to its melting point on a steam-bath. $\alpha$-Tetralone $(12 \mathrm{~g}, 0.8$ mol ) was added foilowed by boron trifluoride-ether ( 50 g , 0.24 mol ) with mechanical stirring. The temperature was raised to $100^{\circ} \mathrm{C}$ and stirring continued for 4 h . On cooling to room temperature $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ was added to give the yellow crystalline tetrafuoroborate ( 6 b ) $(27.2 \mathrm{~g}, 78 \%)$. The product was recrystallised from AcOH, m.p. $270{ }^{\circ} \mathrm{C}$ (prisms) (Found: $\mathrm{C}, 70.7$; $\mathrm{H}, 4.4 . \quad \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{BF}_{4} \mathrm{O}$ requires $\mathrm{C}, 71.1$; $\mathrm{H}, 4.5 \%$ ); $\nu_{\text {max }} 708 \mathrm{~s}, 745 \mathrm{w}, 765 \mathrm{~s}, 783 \mathrm{~m}, 822 \mathrm{~ms}, 882 \mathrm{w}$, $995 \mathrm{~ms}, 1050 \mathrm{vs}, 1190 \mathrm{~ms}, 1252 \mathrm{w}, 1380 \mathrm{~ms}, 1415 \mathrm{~s}, 1450 \mathrm{w}$, $1488 \mathrm{vs}, 1532 \mathrm{vs}, 1575 \mathrm{~ms}, 1588 \mathrm{~ms}, 1601 \mathrm{~s}$, and 1632 vs $\mathrm{cm}^{-1}$; $\delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.55-8.18(4 \mathrm{H}, \mathrm{m}), 7.87-7.39(11 \mathrm{H}$, $\mathrm{m})$, and $3.5-3.1(4 \mathrm{H}, \mathrm{m})$.

5,6,8,9-Tetrahydro-7-phenyldibenzo [ $\mathrm{c}, \mathrm{h}]$ xanthylium Perchlorate (7a).-2-Benzylidene- $\alpha$-tetralone (10) (12 g, 0.05 mol ) and $\alpha$-tetralone ( $5 \mathrm{~g}, 0.035 \mathrm{~mol}$ ) were heated at $90{ }^{\circ} \mathrm{C}$ and $\mathrm{HClO}_{4}(4 \mathrm{~g}, 0.04 \mathrm{~mol})$ was added dropwise over 5 min . The mixture was stirred at $120^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, \mathrm{EtOH}(50 \mathrm{ml})$ added, and the whole refluxed for 10 min . The perchlorate ( $2.4 \mathrm{~g}, 46 \%$ ) crystallised from the aqueous ethanol as prisms, m.p. $318{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 70.1 ; \mathrm{H}, 4.9 . \quad \mathrm{C}_{27} \mathrm{H}_{21} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 70.4 ; \mathrm{H}, 4.6 \%) ; \nu_{\max } 748 \mathrm{~m}, 770 \mathrm{~m}, 792 \mathrm{~m}, 1000-$ $1120 \mathrm{vs}\left(\mathrm{ClO}_{4}^{-}\right), 1115 \mathrm{w}, 1170 \mathrm{vw}, 1190 \mathrm{~m}, 1204 \mathrm{~m}, 1560 \mathrm{~ms}$, 1600 ms , and $1610 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.0-7.77(2 \mathrm{H}, \mathrm{m})$, $7.40-6.80(11 \mathrm{H}, \mathrm{m})$, and $2.57 \mathrm{br}\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

5,6,8,9-Tetrahydro-7-phenyldibenzo $[\mathrm{c}, \mathrm{h}]$ xanthylium Tetrafluoroborate (7b).-2-Benzylidene- $\alpha$-tetralone ( $35 \mathrm{~g}, 0.15$ mol ) and $\alpha$-tetralone ( $20.4 \mathrm{~g}, 0.014 \mathrm{~mol}$ ) were heated at $100{ }^{\circ} \mathrm{C}$ with boron trifluoride-ether ( $32.13 \mathrm{~g}, 0.17 \mathrm{~mol}$ ) for 4 h . The mixture was cooled to room temperature and stirred with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$. The product was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ ( 50 ml ) giving compound (7b) (26.9 g, $42 \%$ ), which was characterised without further purification, m.p. $265{ }^{\circ} \mathrm{C}$ (prisms) (Found: C, 72.5; H, 4.3. $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{BF}_{4} \mathrm{O}$ requires $\mathrm{C}, 72.3 ; \mathrm{H}, 4.7 \%$ ); $\nu_{\max }$ (Nujol) $1612 \mathrm{~s}, 1601 \mathrm{~s}$, $1590 \mathrm{~s}, 1563 \mathrm{~s}, 1530 \mathrm{~m}, 1292 \mathrm{~m}, 1263 \mathrm{~s}, 1050 \mathrm{vs}\left(\mathrm{BF}_{4}^{-}\right)$, $800 \mathrm{~s}, 768 \mathrm{~ms}, 752 \mathrm{~s}$, and $735 \mathrm{~m} \mathrm{~cm}{ }^{-1}$; $\delta\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.79-$ $8.19(2 \mathrm{H}, \mathrm{m}), 8.0-7.2(11 \mathrm{H}, \mathrm{m})$, and $3.05(8 \mathrm{H}, \mathrm{s})$.

General Procedure for Preparation of Pyridinium Salts (Table 1).-The appropriate amounts of pyrylium salt and amine were stirred or refluxed for the time given. After cooling to $20^{\circ} \mathrm{C}$, the crystalline solid which usually separated was filtered off. The filtrate was treated with ether to give more product. If the total weight of crude product corresponded to less than $80 \%$, solvent was removed at $50{ }^{\circ} \mathrm{C}$ and 20 mmHg . This residual material was purified by dissolving in $\mathrm{Me}_{2} \mathrm{CO}$ and reprecipitating with ether. Properties are recorded in Table 2.

Reactions of Pyridinium Salts with Nucleophiles.-(i) With pyridine. The pyridinium salts ( $1-2 \mathrm{~g}$ ) were refluxed in pyridine ( 10 ml ) for $6-12 \mathrm{~h}$ (longer times required for alkyl derivatives). The mixture was cooled to $20^{\circ} \mathrm{C}$ and ice-cooled $\mathrm{Et}_{2} \mathrm{O}$ was added. The product if crystalline was filtered off. If a gum was obtained it was dissolved in $\mathrm{Me}_{2} \mathrm{CO}$ and reprecipitated with $\mathrm{Et}_{2} \mathrm{O}$ and the whole procedure repeated if necessary. The substituted pyridines were isolated by evaporating the combined filtrates at $50^{\circ} \mathrm{C}$ and 20 mmHg and crystallising the residual solid from EtOH.
(ii) With piperidine and morpholine. The same procedure ${ }^{19}$ as for $2,4,6$-triphenylpyridinium salts was used.
(iii) With xanthates. The pyridinium salts were refluxed in absolute EtOH with $\mathrm{MeOCS}_{2}-\mathrm{Na}^{+}$for $2-3 \mathrm{~h}$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-bath. On filtration the substituted pyridine was obtained. From the filtrate the solvent was removed at reduced pressure, giving the crude ester, which could be purified further by distillation at 2 mmHg .
(iv) With acetate. The pyridinium salts were refluxed in glacial HOAc with anhydrous NaOAc for 12 h . The solvent was removed at reduced pressure. The products extracted by dissolving in a minimum quantity of cold MeOH may be purified by distillation or column chromatography.

5,6-Dihydro-2,4-diphenylbenzo[h]quinoline (44).-The pyrylium salt ( 6 a ) ( 2 g ) in EtOH ( 20 ml ) was stirred with aqueous $\mathrm{NH}_{4} \mathrm{OH}(20 \mathrm{ml}, 35 \%)$ at $20{ }^{\circ} \mathrm{C}$ for 3 h . The quinoline (44) separated; it crystallised from aqueous EtOH as plates, m.p. $128{ }^{\circ} \mathrm{C}(1.5 \mathrm{~g}, 98 \%)$ (Found: C, 90.2 ; H , $5.9 ; \mathrm{N}, 4.0 . \quad \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 90.0 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.2 \%$ ); $\nu_{\text {max }}$ (Nujol) $749 \mathrm{~s}, 873 \mathrm{~m}, 1030 \mathrm{mw}, 1150 \mathrm{mw}, 1225 \mathrm{mw}$, $1417 \mathrm{~ms}, 1498 \mathrm{~ms}, 1575 \mathrm{~s}, 1592 \mathrm{~s}$, and $1608 \mathrm{mw} \mathrm{cm}{ }^{-1} ; \delta$ $\left(\mathrm{CCl}_{4}\right) 8.7-7.0(15 \mathrm{H}, \mathrm{m}$, aromatic) and $2.85(4 \mathrm{H}, \mathrm{s})$.

5,6,8,9-Tetrahydro-7-phenyldibenzo $[\mathrm{c}, \mathrm{h}]$ acridine (45).The pyrylium salt (7a) ( 0.5 g ) was stirred in EtOH ( 20 ml ) and aqueous $\mathrm{NH}_{4} \mathrm{OH}(45 \%, 5 \mathrm{ml})$ for 4 h at $20^{\circ} \mathrm{C}$. The acridine (45) separated; it crystallised from $\mathrm{EtOH}-\mathrm{MeOH}$ ( $50: 50$ ) as plates, m.p. $166-167{ }^{\circ} \mathrm{C}(0.3 \mathrm{~g}, 87 \%)$ (Found: $\mathrm{C}, 90.3 ; \mathrm{H}, 5.9 ; \mathrm{N}, 4.1 . \quad \mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}$ requires $\mathrm{C}, 90.2 ; \mathrm{H}, 5.9$; $\mathrm{N}, 3.9 \%$ ) ; $\nu_{\text {max. }}$ (Nujol) $659 \mathrm{w}, 709 \mathrm{~s}, 730 \mathrm{w}, 742 \mathrm{~s}, 762 \mathrm{~s}, 773 \mathrm{~m}$, $781 \mathrm{w}, 818 \mathrm{mw}, 1042 \mathrm{mw}, 1558 \mathrm{~m}, 1595 \mathrm{w}$, and $1610 \mathrm{w} \mathrm{cm}^{-1}$;
$\delta\left(\mathrm{CCl}_{4}\right)(8.6-8.4), 8.51(2 \mathrm{H}, \mathrm{m}), 7.45-6.90(11 \mathrm{H}, \mathrm{m})$, and $2.90-2.35(8 \mathrm{H}, \mathrm{m})$.

5,6,8,9-Tetrahydro-7-phenyldibenzo [c,h]acridinium Perchlorate [cf. (45)].-Compound (45) ( 0.25 g ) was treated with $\mathrm{HClO}_{4}(1 \mathrm{~g})$ in $\mathrm{EtOH}(10 \mathrm{ml})$, and $\mathrm{Et}_{2} \mathrm{O}$ was added. The perchlorate ( $1.1 \mathrm{~g}, 86 \%$ ) separated; it crystallised from MeOH as prisms, m.p. $317{ }^{\circ} \mathrm{C}$ (Found: C, 71.0; H, 4.9; $\mathrm{N}, 3.2 . \quad \mathrm{C}_{27} \mathrm{H}_{22} \mathrm{ClNO}_{4}$ requires $\mathrm{C}, 70.5 ; \mathrm{H}, 4.8 ; \mathrm{N}, 3.1 \%$ ); $\nu_{\text {max. }}$ (Nujol) $713 \mathrm{~ms}, 732 \mathrm{~ms}, 743 \mathrm{~s}, 760 \mathrm{~s}, 780 \mathrm{~ms}, 800 \mathrm{~m}$, $1160-1030 \mathrm{vs}\left(\mathrm{ClO}_{4}^{-}\right), 1228 \mathrm{~m}, 1280 \mathrm{mw}, 1570 \mathrm{mw}$, and $1620 \mathrm{~ms} \mathrm{~cm}^{-1}$
4,6-Diphenyl-2-t-butylpyridine.- 4,6-Diphenyl-2-t-butylpyrylium perchlorate ( 2 a ) ( $3 \mathrm{~g}, 0.007 \mathrm{~mol}$ ) was refluxed with aqueous $\mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{ml})$ in abs. EtOH ( 50 ml ) for 10 min . The solvent was removed and cold water added ( 20 ml ). The product was extracted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$. The solvent was removed at reduced pressure ( 20 mmHg ), and the product recrystallised from abs. EtOH as needles ( 1.7 g , $82 \%$ ), m.p. $87-88{ }^{\circ} \mathrm{C}$ (Found: C, 87.4 ; H, 7.5 ; N, 4.9. $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}$ requires C, 87.8; H, 7.4; $\mathrm{N}, 4.9 \%$ ) ; $\nu_{\text {max. }}\left(\mathrm{CHBr}_{3}\right)$ $760 \mathrm{~s}, 772 \mathrm{~m}, 881 \mathrm{~ms}, 1232 \mathrm{w}, 1400 \mathrm{~ms}, 1481 \mathrm{mw}, 1501 \mathrm{~ms}$, $1552 \mathrm{~s}, 1580 \mathrm{~ms}$, and $1600 \mathrm{~s} \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 8.14(2 \mathrm{H}, \mathrm{m})$, $7.5(10 \mathrm{H}, \mathrm{m})$, and $1.4(9 \mathrm{H}, \mathrm{s})$.

4-Phenyl-2,6-di-t-butylpyridine.-4-Phenyl-2,6-di-t-butylpyrylium perchlorate ( 3 a ) ( $1.5 \mathrm{~g}, 0.004 \mathrm{~mol}$ ) was refluxed in $\mathrm{McOH}(10 \mathrm{ml})$ with aqueous $\mathrm{NH}_{4} \mathrm{OH}(35 \%, 5 \mathrm{ml})$ for 5 min . The solution was cooled in ice; the crystals formed were filtered off and dried at 0.1 mmHg . The product 4 -phenyl2,6 -di-t-butylpyridine ( $1.0 \mathrm{~g}, 95 \%$ ) was obtained as prisms (from aq. MeOH ), m.p. $50-51{ }^{\circ} \mathrm{C}$ (Found: C, 85.1; H, 9.6; $\mathrm{N}, 5.2$. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}$ requires $\mathrm{C}, 85.3 ; \mathrm{H}, 9.4 ; \mathrm{N}, 5.2 \%$ ) ; $\nu_{\text {max }}$ $\left(\mathrm{CHBr}_{3}\right) 760 \mathrm{~s}, 780 \mathrm{w}, 855 \mathrm{~m}, 877 \mathrm{~ms}, 904 \mathrm{~m}, 1030 \mathrm{w}, 1082 \mathrm{w}$, $1201 \mathrm{w}, 1220 \mathrm{w}, 1240 \mathrm{w}, 1255 \mathrm{~m}, 1360 \mathrm{~ms}, 1400 \mathrm{~ms}, 1460 \mathrm{~m}$, $1478 \mathrm{~ms}, 1499 \mathrm{~ms}, 1552 \mathrm{~s}$, and $1595 \mathrm{~s} \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 7.7-$ $7.3(5 \mathrm{H}, \mathrm{m}), 7.28(2 \mathrm{H}, \mathrm{s})$, and $1.32(18 \mathrm{H}, \mathrm{s})$.

We thank Drs. E. Lunt and R. C. Patel for helpful dis-
cussions and Dr. R. J. Blade for some preliminary experiments.
[9/1439 Received, 10th September, 1979]

## REFERENCES

${ }^{1}$ (a) N. F. Eweiss, A. R. Katritzky, P. L. Nie, and C. A. Ramsden, Synthesis, 1977, 634; (b) U. Gruntz, A. A. Ikizler, A. R. Katritzky, D. H. Kenny, and B. P. Leddy, J.C.S. Perkin I, 1979, 436; (c) A. R. Katritzky, A. Chermprapai, and R. C. Patel, J.C.S. Perkin I, 1980, in the press.
${ }^{2}$ A. R. Katritzky, U. Gruntz, D. H. Kenny, M. C. Rezende, and H. Sheikh, J.C.S. Perkin I, 1979, 430.
${ }^{3}$ A. R. Katritzky, U. Gruntz, N. Mongelli, and M. C. Rezende, J.C.S. Chem. Comm., 1978, 133.
${ }^{4}$ A. R. Katritzky, G. Liso, E. Lunt, R. C. Patel, S. S. Thind, and A. Zia, J.C.S. Perkin I, 1980, 849.
${ }_{5}$ A. R. Katritzky, M. F. Abd-el-Megeed, G. Lhommet, and C. A. Ramsden, J.C.S. Perkin I, 1979, 426.
${ }^{6}$ A. T. Balaban and A. B. Susan, Rev. Roumaine Chim., 1969, 14, 111.

7 A. T. Balaban and C. D. Nenitzescu, Org. Synth., Coll. Vol. V, 1973, p. 1106.
${ }^{8}$ R. J. Blade, M.Sc. Thesis, University of East Anglia, 1975, p. 81.
${ }^{9}$ A. Zia, M.Sc. Thesis, University of East Anglia, 1978, pp. 91-95.
10 J. A. Van Allen and G. A. Reynolds, J. Org. Chem., 1968, 1102.
${ }_{11}$ W. S. Rapson and R. G. Shuttleworth, J. Chem. Soc., 1940, 636.
${ }^{12}$ A. R. Katritzky, F. Al-Omran, R. Patel, and S. S. Thind, J.C.S. Perkin I, 1980, preceding paper.
${ }^{13}$ A. R. Katritzky, R. T. C. Brownlee, and G. Musumarra, in the press.
${ }_{14}{ }^{4} \mathrm{~W}$. J. Le Noble and Y. Ogo, Tetrahedron, 1970, 26, 4119.
${ }^{15}$ A. R. Katritzky, U. Gruntz, N. Mongelli, and M. C. Rezende, J.C.S. Perkin I, 1979, 1953
${ }_{16}$ A. R. Katritzky and S. S. Thind, J.C.S. Chem. Comm., 1979, 138.
${ }_{17}^{17}$ J. van Alphen and G. Drost, Rec. Tvav. chim., 1950, 69, 1080. ${ }^{18} \mathrm{~K}$. Dimroth, N. Greif, W. Städe, and F. W. Steuber, Angew. Chem. Internat. Edn., 1967, 6, 711.
${ }_{19}$ A. R. Katritzky, J. B. Bapat, R. J. Blade, B. P. Leddy, P.-L. Nie, C. A. Ramsden, and S. S. Thind, J.C.S. Perkin I, 1979, 418.

